TRACING NITROGEN FROM THE ARROYO COLORADO INTO THE LOWER LAGUNA MADRE

Hudson DeYoe, Center for Subtropical Studies and Biology Dept at University of Texas-Pan American, Edinburg, and

Warren Pulich, River Systems Institute, Texas State University, San Marcos, TX and UTPA Center for Subtropical Studies, Edinburg

The Lower Laguna Madre and the Arroyo Colorado

- LLM contained around 53 % of the total seagrass in Texas in 1998
 - Seagrass is the keystone species for the LLM
 - Many marine animals depend upon it
- The Arroyo Colorado is a highly eutrophic distributary that drains the Lower Rio Grande Valley
 - Arroyo nutrients come from municipal wastewater treatment plants, urban runoff and agricultural drainage

Nutrients in estuaries

- Nutrients are necessary for growth of primary producers such as phytoplankton, macroalgae, seagrass and seagrass epiphytes
- In moderation, nutrients have beneficial impact but in excess can produce nuisance or harmful quantities of algae sometimes leading to decline of seagrass (shading, smothering)
- Bacterial transformations can remove nitrogen from the system through denitrification

Questions and Approach

- Is excess nitrogen getting into the LLM from the Arroyo?
- If so, where is it going?
- Approach: Use naturally occurring isotopes of nitrogen (¹⁴N- common, ¹⁵N- rare) to follow it from Arroyo Colorado into the LLM
 - Nitrogen sources can have distinctive isotopic signatures
- Biologically-mediated reactions (enzymes)
 discriminate between N isotopes resulting in significant differences between reactants and products

$\delta^{15}N$ of various N sources

WATER RESEARCH 43 (2009) 1159-1170

Box plots of $\delta^{15}N$ values from various sources. Box plots illustrate the 25th, 50th and 75th percentiles; whiskers indicate the 10th and 90th percentiles; circles are outliers. $\delta^{15}N$ ($^{0}/_{00}$)=[(Rsample-Rstandard)/Rstandard] x1000 where R is the isotope ratio $^{15}N/^{14}N$. N standard is atmospheric N_{2} .

Our plan

- Collect biological samples at 27 sites north, south and east of the confluence of the Arroyo Colorado and Lower Laguna Madre.
- At each site, where available, collect seagrass, drift algae and epiphyte samples and analyze for isotopic N.
- In addition to the above, archived seagrass and drift algal samples from previous studies were also

analyzed.

Sampling Sites Aug, 18, 2011

ARCHIVED SAMPLE DATA

del 15N values for the drift algae, Palisada in LLM, May 21, 2004

Arroyo Colorado is at 39 km.

del 15N of Halodule leaf tissue in LLM, 2007-8

Site	Distance		Species	Wetness	15N
Green island	41.038	5/21/2005	Thalassia	Avg	5.45
Bay West	19.375	6/1/2005	Thalassia	Avg	2.61
ABC-2	14.754	5/21/2005	Thalassia	Avg	1.12

Arroyo Colorado Flow at Harlingen, Jan-Aug 2002

						_
Site	Distance		Species	Wetness	15N	
North trans deep	50.661	8/24/2002	Palisada	Avg	6.26	
Arroyo trans deep	38.892	8/17/2002	Palisada	Avg	6.40	
SPI trans medium	14.754	8/31/2002	Palisada	Avg	1.61	
Green island	41.038	6/18/2003	Palisada	Wet	2.86	
ABC	14.754	6/18/2003	Palisada	Wet	2.21	
Green island	41.038	6/24/2003	Palisada	Wet	3.82	
ABC	14.754	6/24/2003	Palisada	Wet	2.50	

AUGUST 2011 DATA

15N values for Halodule in LLM, Aug 2011

Conclusions

- N isotopic signature at the same location varies with type of primary producer
- For one species, seasonal variation occurs at a site
- Differences among primary producers (epiphytes, drift algae, seagrass) may reflect differences in longevity, biomass and metabolic rate
 - May be useful to detect events of differing duration
- Despite the above, N isotopes detected clear instances of AC nitrogen being incorporated by primary producers

Acknowledgements

- Thanks to Texas Parks and Wildlife for assisting with sample collection
- Thanks to John Garcia for processing samples
- This project was funded by TWDB in support of the development of a freshwater inflows recommendation for the LLM